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Abstract

In this article we investigate the minimal dimension of a subspaasldkz) needed to interpolate
an arbitrary function and some of its prescribed partial derivatives at two arbitrary points. The subspace
in question may depend on the derivatives, but not on the location of the points. Several results of this
type are known for Lagrange interpolation. As far as | know, this is the first such study for Hermite
Interpolation.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction and {d,, d,}-interpolating case

Multivariate Hermite Interpolation has been studied extensively in the last 30 years.
Excellent surveys on recent accomplishments can be found in [4,8,9]. Naturally, most of the
guestions are centered around the similarities and differences from the univariate case. The
most apparent difference is the lack of unicity for Hermite interpolation in the multivariate
case. Hence there are studies of those configurations of points and derivatives for which
the Hermite interpolation problem is uniquely solvable (correct, proper, well defined....)
in a given space, usually the space of polynomials of a given degree. We refer to [5,6]
as examples of such studies. There is another approach (cf. [2,10]) where one starts with
arbitrary Hermite data and designs the space to suit the needs. This article is different. While
this study still starts from the lack of correctness in Hermite interpolation, we are looking for
spaces for which a certain Hermite interpolation problem is solvable for any configurations
of interpolation points. Hence the dimension of these spaces may, by necessity, be larger
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then the number of data and the uniqueness is not an option. The second difference is that we
are contrasting multivariate Hermite interpolation with multivariate as well as univariate
Lagrange interpolation. In some cases we show that multivariate Hermite problem for
arbitrary configuration of points may be closer to the univariate problem than the similar
problem for Lagrange interpolation. To be precise, we investigate the minimal dimension of a
subspace of 1(R?) needed to interpolate an arbitrary functions and some of its prescribed
partial derivatives at two arbitrary points. The subspace in question may depend on the
derivatives, but not on the location of the points. For Lagrange interpolation several results
of this type are known (cf[3,12-15]). As far as | know, this is the first such study for
Hermite (Lagrange) Interpolation.

Let A = {41, A2, ..., /n} C (CL(R?)* be a finite collection of functionals defined on
CL(R?). Letd c CL(R?) be afinite-dimensional subspace. We saydhiatA-interpolating
if for any sequence of scalasg, az, ..., o, € R, there exists a functioif € ® such that
Ai(f)y=uajforall j=1,2,..., 5.

Let f1, fo, ..., fm be abasis fod. Define ther x m matrix ® := [4;(fi)l. Clearly, the
spaced is A-interpolating if and only if

rank® = rank[2; (fi)] = n.

Observe that the matri® depends on the basfg;}, but rankd is independent of the
choice of the basis. It is also obvious thadifis {11, 1o, ..., A, }-interpolating, them: :=
dimd>n.

As an example consider the case of Lagrange interpolatiea:{d, , d,} whereu, v € R?
andd,, € (CL(R?)* is defined by, (f) = f(w). Letu = (a, b) andv = (c, d).

If u = v, then there are nd-interpolating spaces. If £ v anda # ¢ then the linear
span®4 of the functionsfi(x, y) := 1 and fo(x, y) := x is {J,, d,}-interpolating. In fact
the spaca; is a{o,, J, }-interpolating space of the least possible dimension (Bin= 2).
Similarly if u # v andb # d thensparl, y] is {d,, d,}-interpolating. Hence the three-
dimensional spac® := sparil, x, y] is {3,, d,}-interpolating for any: # v € R2. The
natural question to ask is whether there exists a two-dimensional $pace’(R?) which
is simultaneouslyd,, d,}-interpolating for any: # v € R?? The answer is given by the
famous “Mairhuber Theorem” (cf7]):

Theorem 1. For any two-dimensional subspa®e= spar f1, f2] C C(R?) there exists a
pair of distinct pointst, v € R? such that the spac® does not interpolate at these points.

Since we will use the Mairhuber argument elsewhere in this paper, (and since the idea is
very cute) let us reproduce it.

Proof of Theorem 1. Let ® = sparj f1, f2]. Position two points:, v on diametrically
opposite ends of a circle and consider the matrix

. o] = JSiw)  fa(u) '
fiv)  f2(v)
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As we rotate the diameter, the pointsand v switch positions and hence dbfu, v]
changes sign. By the intermediate value theorem, there exists a,paguch that de®
[u, v] = O0; henced is not interpolating at these points[]

This theorem together with the preceding remarks settles the first case of Hermite inter-
polation:

The minimal dimension of a spadethat interpolates functional&,,, ¢,} for anyu #
v € R?is three, andD := spanl, x, y] is such a space.

The rest of this paper is dedicated to similar questions with the collection of functionals
A consisting not only of point-evaluationg, ¢, but also of the derivatives at those points:

Oy O § where 04 v € R?is a given direction.

2

2. Case 2:{0,, 0y, 0y 0 (,%}-Hermite interpolation

The four-dimensional spade:= sparil, x, y, x>+ y2]is {du, 6y, du 0 %}-interpolating
for anyu # v € R? and for anyy € R?\{0}.

Given any three-dimensional spadecC Cc1(R?) and any fixed directiom € R? there
existu # v € R? such that® is not {3, dy, d, o %}-interpolating.

The first claim is easy to verify directly. It also follows from the theorem in the next
section.

To prove the second statement we need to show that given any three fungtiofas
f3 € C1(R?) and any direction € R? the determinant

fiw)  fa(w)  f3(u)
i) fov)  f3(w)

0f1 of2 of3
E(M) E(”) E ()

=0 forsomeu # v e R

This will follow as a corollary from the next, more general, topological theorem, where the
vector-valued functio (1) := (%(u), %(u), %(u))which formally speaking depends

dy v

on the functionF (u) := (f1(u), f2(u), f3(u)) is replaced with an arbitrary vector-valued
functionG : RZ2 — R3.

Theorem 2. For every six continuous functiorfs, /2, f3, g1, g2, g3 : R?> — R there exist
u # v € R? such that the x 3 determinant

1) fa(v)  f3(v)
fiw)  fo(u) f3(u) | =0.
g1(u) go(u) ga(u)

Proof. Without loss of generality we can assume that the funcfioe: 1 in some neigh-
borhoodU of zero. Indeed if f1(0), f2(0), f3(0)) = 0 then the theorem is obvious. If one
of the components, safs(0) is different from zero, we can divide the first and second rows
by f3(v) and f3(u), respectively.
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To prove the theorem, we assume by way of contradiction that the determinant

i) fow) 1
fiw)  fo(u) 1 |#£0 forallu#veU. (2.2)
g1(u) go(u) ga(u)

To this end consider a map : R? — RS defined byF(u) = (fi(u), fo(u), 1). It
follows from assumption (2.1) that is injective and the imagé'(R?) is a subset of the
plane{(x, y,z) : z = 1}. LetC C U be a circle centered at 0. By the Jordan curve the-
orem we conclude that the curv&(C) divides the plang = 1 into two components:

a bounded componei® and an unbounded componddtwith F(C) being the bound-
ary common to both. MoreoveF (0) € B, since 0 belongs to the disk bounded Gy
Consider now the plan€(0) := spariF(0), (g1(0), g2(0), g3(0))]. It follows from (2.1)
that P(0) is indeed a two-dimensional plane that passes through the origin, and is not
parallel to the plane = 1. Hence the intersection of the two planes is a straight line
[ = P(0) N{z = 1}. The linel contains the pointF(0) € B and a pointw € D,
since the line cannot belong to the bounded compoBer8ince the region8 and D

are disconnected, it follows that there exists a paint € [ N F(C) and hence there
existv # 0 in R2 such thatF(v) = wy € [ C P(0). That means that the vectors
F(0), F(v) and (g1(0), g2(0), g3(0)) belong to the same plane(0), which contradicts
(2.1). O

3. Case 3: Interpolation with two derivatives

In this section we examine the following three subcases:

Q) {04, 0y, 0y 0 % Oy 0 %}—interpolatingwith v andu linearly independent directions in
R2

(2) {04, 0y, 0y 0 é 5y 0 %}-interpolatingwith v andy linearly independent directions in
RZ

(3) {0u, Oy, Su 0 % 5y 0 %}—interpolatingwith "

Surprisingly, in all these cases the minimal dimension of the interpolation subspace is
four. Unlike the previous case, the two-dimensional nature of the problem does not increase
the dimension of the interpolation spaces.

Unless otherwise specified, we will use coordinate notations for the points and the deriva-
tives as follows:

u=1(a,b), v=1(d), v=(f) and u=(y,9). (3.1)

Theorem 3. Let A = {J,, 6y, 0y © % Oy o @O_,u} The four-dimensional spack := span

(1, x, y, x2 + y?] is A-interpolating for anyu # v € R? and for any linearly independent
directionsy and x in R?.
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Proof. By direct computation, the associated determinant
1 a b a?+0b?
1 ¢ d c?+d* | _ 5 )
0 a B 2an+2pp| ~ @7 HG=d)(fy—ao).
0 7 & 2ay+2bo

Sincev andy are linearly independent, the quantif§y — «0) # 0. Hence this determi-
nantis zero ifu = v. O

Theorem 4. Given two linearly independent directionsaind . in R? there exists a four-
dimensional spac® which interpolategd,, &y, d, o % 5y 0 %} for anyu # v € R2.

Proof. First, consider the case= (1,0) andu = (0, 1) and the spac® := sparl, x, y,
x2 — y2]. Once again, direct computation of the associated determinant yields

=(a—0c)+b—d?>

Using a linear change of variables we conclude that the space
® := sparil, x, y, (v, (x, »)Z = (1, (x, »)?]

iS {0y, 0y, Oy O p% dy O ﬁ}-interpolating forany # v € R2. O
The last subcase is a little more delicate.

Theorem 5. Given a directionv € R?\{0}, there exists a four-dimensional subspake
that interpolates functionals,, d,, 3, o % 5y 0 %} for anyu # v € R

Proof. We again assume that= (1, 0). This time the desired spade= spar1, x, x* +
y, x3 4+ 3xy]. Indeed

1 a a?+b a®+3ab
1 ¢ ?+d c3+43cd
01 2 3d°+3b
01 22 3%+3d

=—(a—0o)*=30b-d>

The general direction case follows by linear change of variables.=f («, ) # 0,
choose

X=ox+pfy, Y =oay—px.
The interpolating space is

® =spanl, X, X°+ Y, X3+3xy]. O
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Remark 6. It is interesting to note that none of the spaces presented in the last three
theorems is interpolating for any other set of functionals considered in this section.

4. Case 4: Interpolation with three derivatives
In this section we deal with spaces that interpolate the functionals

0 0 0
AZ{514’51)’5”06_\)1’51406_\)2’51)0@}.

Using linear change of variables, we can restrict our considerations to the collection

A= {5u,5v,5uoi,5uoi,5voi}.
0x dy 0x

Proposition 7. The six-dimensional subspade= sparil, x, y, xy, x2 — y2, x2 — 3x)?]
is A-interpolating for anyu # v € R?.

Proof. We wish to show that

1 a b ab a®—b? a3—3ab?
1 ¢ d cd c2—d? 3 —3cd?
rank| 0 1 0 & 2a  3a®—3p% | =5. (4.1)
0 01 « —2b —6ab
010 d 2c  3c2—3d?

Deleting the last column, and evaluating the remaining determinant we obtain:

b ab a®—b?

d cd ?—d?

b 20 | =(d—b)((b—d)?+(a—c)P
1 a -2b

0 d 2c

o
P OR O R
o

which is equal to zero if and only if = b.
Settingd = b in matrix (4.1), and deleting the fourth column we have
b a?—b? a®—3ab?
b c2—b% 3—3ch?
il 3a? — 3b? | = a®* — dac® + 6c%a® — 4ca® + ¢ = (a — c)4
1 -2 —6ab
0 2 32-3K

o
P ORr O R
o

which proves the desired result]

Conjecture 8. For any five-dimensional subspadec C1(R?) there exist points # v €
R? such thatb is notA-interpolating.
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In support of this conjecture we offer the following “claim”, for lack of a better term.

Claim 9. Let® = sparip1, p2, p3, pa, ps] be the span of five polynomials of degree at
most three. The is not A-interpolating.

Proof. Let P : R?2 — R® be a mapping defined by

P(u) = (p1(uw), p2(u), pa(u), pa(u), ps(u)), wherepi(u) = pi(x,y)

k
= Z al(j)x’y

i+j<3

and letu = (a, b) andv = (¢, d). To set up a contradiction we assume that the determinant

— P(a,b) -
P(c,d) -—

aP( d)
— —P(c.d) —
Ox

3 £0 forall(a,b) # (c,d) € R%. (4.2)
AT
y

0
— —P(a,b) —
0x (@5)
LetX = (a — ¢) andY = (b — d). We now replace the first row in (4.2) with
0 0
0(X,Y,c,d) = P(a,b) — P(c,d)— X — P(c,d)—Y — P(c,d).
0x dy

By Taylor's Theorem, the coordinates §f are polynomials inX andY containing
guadratic and cubic terms only and the coefficient with those terms are polynomials in
c andd.

Similarly we replace the last rowwﬂ#P(a b)—%xP(c d) = 3% Q(X Y, ¢, d) which
is a quadratic polynomials with no constant term. The resulting determitanty, ¢, d)

is a fifth degree polynomial iX andY

RX.Y.c.dy= > Aijlc.d)X'Y/, (4.3)
3<i+j<5

whereA; ;(c, d) are polynomials irc andd.
Assumption (4.2) implies that

R(X,Y,c,d)>0 foralX,Y eR,and=0iff X =Y =0.

Thus (cf.[1, Proposition 6.3.4]R(X, Y, ¢, d) is a sum of squares of polynomials. Therefore
the coefficients in front of the monomials of odd degree must be equal to zero éarall
d.

Hence

Aj j(c,d)=0 forallc,d,andi, j suchthat + j = 3,5.
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We use Maple to solve the resulting system of equationsfﬁﬁrAs aresult we obtain a
parametrized family of solutions. Using Maple once more we verified that for those values
of al,(f‘j?, the equatioMo a(c, d) = 0 has a real solution. That means that for seraaedd

R(X,Y,c,d)=A13(c, )XY+ Apo(c, d)X?Y? + Ag1(c, d)X3Y
+ Asolc, d)X*.

ThusR(X,Y,c,d)=0if X =(a—c¢)=0andY 0. O

5. Case 5: Interpolation with four derivatives

In this section we settle the last case/ofnterpolation withA consisting of two point
evaluations and all first partial derivatives at these points, i.e.

0
dy

0 0
,5,]0&,51,0—}.

0
A= {514’511551!()555140 ay

Namely we will prove the following:

Theorem 10. The spaceb = sparl, x, y, x2 — y2, yx, x3 — 3y2x, —3x%y + y3] is A-
interpolating at any two distinct points u and No six-dimensional spac® has this
property.

Proof. The first part of the statement is a consequence of Theorem 12 below. The last part
is a simple application of the “Mairhuber argument” that implies a more general reslllt.

Theorem 11. LetF, G and H be arbitrary continuous functions mappiRginto R®. Then
for any circleC c R? there exists a pair of poinis # v € C such that thé x 6 determinant

F(u) —
— F(U) —
Gu) —
— G(U) —
H(u) —
H(v) —

det

Proof. Consider the above determinant. Aandv are rotated into each other, three con-
secutive pairs of rows alternate and hence the sign of the determinant changes. Once again,
by the intermediate value theorem, we conclude the existencarafv for which the above
determinant is zero. [

Theorem 12. For every functionf € C1(R?), the (4k — 1)-dimensional spac® spanned
by harmonic polynomials of degré2k — 1) interpolates the values of the function and all
of its partial derivatives of the first order at any k distinct pointsifi
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Proof. Consider thek distinct pointsu1, up, ..., u; € R? as complex numbers; =
(xj,yj) =x;+iyj. Let{a;, B;,y; € R:j=1,... k} begiven. Letp(z) = ap + a1z +
oo +ag_12%"1 = h(x, y) + ig(x, y) be a complex polynomial such that

puj) =aj, p'uj)=p;—iy;.
Thenh(u;) = o; and by the Cauchy—Riemann equation we have

( ')—i(h( ) +ig( ))—a—h(')—'a—h(')—ﬁ—'“
puj) === (lx, y) +igx, y)) = == W, ’ay”J—j 1

Henceh is the harmonic polynomial with the desired properti

6. Concluding remarks

(1) In this paper we were only concerned with interpolation of the values of a function
and its first-order partial derivatives at two point$if. Let us mention what little is known
about Hermite interpolation at three or more point&fhor at two points ink?, d > 2:

Using tools of Differential Topology the following general upper bound was proved in
[11]:

Theorem 13. Let ug, up, ..., u; € R? be an arbitrary collection of distinct points.
For eachj = 1,...,k consider a collection ofi; distinct functionalsA(j) = {d,; o

L(lj), ooy Oy 0 Lfi;.)} whereLl(j) are arbitrary operators orC>® (R%). Let Ax (7)) = UA())
and letm = #Ax(n), the cardinality ofAy (7). Then there exists a subspa®ec C(RY)

with dim® = dk + m that interpolatesA, (n) for an arbitrary choice of distinct points
Ui, u2,...,Ur € Rd.

Even for this, rather weak estimate, only the existence of a subgpace (R?) with
dim® = dk + m is demonstrated. Harmonic polynomials, that came so handy in The-
orem 12, are useless for interpolation of higher derivatives, since the Laplacian of such
polynomials is equals to zero.

No reasonable lower bound is known to the author. Some lower bounds for Lagrange
interpolation are given if8,12,14,15]. Yet, the exact values of the minimal dimension of a
space that interpolates at five pointgif or four points inR® are not known.

(2) The “negative results” (Theorems 2 and 10) were proved in greater generality, than
necessary. Instead of interpolating an arbitrary function and some of its partial derivatives at
two arbitrary points, we in fact obtained estimates for the minimal dimension of a subspace
of C(R?) needed to interpolate simultaneously some set of continuous functions at two
arbitrary points. For instance, Theorem 2 shows that for efery®? — RS2 there exists a
pair of pointsu # v € R? such that the X 3 determinant

— F(u) —
— F(U) —

det P
- —F@u) —
ox

=0,
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by showing that for every two functions, G : R2 — R3, there exists a pair of points
u # v € R? such that the X 3 determinant

— F(u) —
det| — F(v) —| =0.
- Gu) —

Comparison of Claim 9 with the proposition bellow suggests that these two problems are
not equivalent.

Proposition 14. There exist three continuous functiofisG and H : R? — R®, such that
the5 x 5 determinant

F(u) —

F(v) —

det| — G(v) — | #0
— H(U) —

Gu) —

foranyu # v € R2.

Proof. Consider the functions:
F(x,y):=(1,0,0,x,y); G(x,y) :=(0,1,0, —y, x); H(x,y) := (0,0,1,0, 0).

The resulting determinant is

100 a b
100 ¢ d

det| 0 1 0 —d ¢ | =2ca+2db—c?—d?—a®—b?
001 0 O
010 —b a

=—(@@—-c?-pb-d> O

(3) It was observed by one of the referees, that all the polynomial spaces in all the
examples ar®-invariant (invariant with respect to partial derivatives), and therefore shift
invariant. Using this property one can take one interpolation node at the origin, without
loss of generality, which would provide simplification in the computation of the appropriate
determinants.
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